184 research outputs found

    Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes

    Get PDF
    Abstract Background Recent mapping of eukaryotic transcriptomes and spliceomes using massively parallel RNA sequencing (RNA-seq) has revealed that the extent of alternative splicing has been considerably underestimated. Evidence also suggests that many pre-mRNAs undergo unproductive alternative splicing resulting in incorporation of in-frame premature termination codons (PTCs). The destinies and potential functions of the PTC-harboring mRNAs remain poorly understood. Unproductive alternative splicing in circadian clock genes presents a special case study because the daily oscillations of protein expression levels require rapid and steep adjustments in mRNA levels. Results We conducted a systematic survey of alternative splicing of plant circadian clock genes using RNA-seq and found that many Arabidopsis thaliana circadian clock-associated genes are alternatively spliced. Results were confirmed using reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and/or Sanger sequencing. Intron retention events were frequently observed in mRNAs of the CCA1/LHY-like subfamily of MYB transcription factors. In contrast, the REVEILLE2 (RVE2) transcript was alternatively spliced via inclusion of a "poison cassette exon" (PCE). The PCE type events introducing in-frame PTCs are conserved in some mammalian and plant serine/arginine-rich splicing factors. For some circadian genes such as CCA1 the ratio of the productive isoform (i.e., a representative splice variant encoding the full-length protein) to its PTC counterpart shifted sharply under specific environmental stress conditions. Conclusions Our results demonstrate that unproductive alternative splicing is a widespread phenomenon among plant circadian clock genes that frequently generates mRNA isoforms harboring in-frame PTCs. Because LHY and CCA1 are core components of the plant central circadian oscillator, the conservation of alternatively spliced variants between CCA1 and LHY and for CCA1 across phyla [2] indicates a potential role of nonsense transcripts in regulation of circadian rhythms. Most of the alternatively spliced isoforms harbor in-frame PTCs that arise from full or partial intron retention events. However, a PTC in the RVE2 transcript is introduced through a PCE event. The conservation of AS events and modulation of the relative abundance of nonsense isoforms by environmental and diurnal conditions suggests possible regulatory roles for these alternatively spliced transcripts in circadian clock function. The temperature-dependent expression of the PTC transcripts among members of CCA1/LHY subfamily indicates that alternative splicing may be involved in regulation of the clock temperature compensation mechanism. Reviewers This article was reviewed by Dr. Eugene Koonin, Dr. Chungoo Park (nominated by Dr. Kateryna Makova), and Dr. Marcelo Yanovsky (nominated by Dr. Valerian Dolja).</p

    Plant Abiotic Stress: Insights from the Genomics Era

    Get PDF

    Genome scale transcriptome analysis of shoot organogenesis in Populus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our aim is to improve knowledge of gene regulatory circuits important to dedifferentiation, redifferentiation, and adventitious meristem organization during <it>in vitro </it>regeneration of plants. Regeneration of transgenic cells remains a major obstacle to research and commercial deployment of most taxa of transgenic plants, and woody species are particularly recalcitrant. The model woody species <it>Populus</it>, due to its genome sequence and amenability to <it>in vitro </it>manipulation, is an excellent species for study in this area. The genes recognized may help to guide the development of new tools for improving the efficiency of plant regeneration and transformation.</p> <p>Results</p> <p>We analyzed gene expression during poplar <it>in vitro </it>dedifferentiation and shoot regeneration using an Affymetrix array representing over 56,000 poplar transcripts. We focused on callus induction and shoot formation, thus we sampled RNAs from tissues: prior to callus induction, 3 days and 15 days after callus induction, and 3 days and 8 days after the start of shoot induction. We used a female hybrid white poplar clone (INRA 717-1 B4, <b><it>Populus tremula × P. alba</it></b>) that is used widely as a model transgenic genotype. Approximately 15% of the monitored genes were significantly up-or down-regulated when controlling the false discovery rate (FDR) at 0.01; over 3,000 genes had a 5-fold or greater change in expression. We found a large initial change in expression after the beginning of hormone treatment (at the earliest stage of callus induction), and then a much smaller number of additional differentially expressed genes at subsequent regeneration stages. A total of 588 transcription factors that were distributed in 45 gene families were differentially regulated. Genes that showed strong differential expression included components of auxin and cytokinin signaling, selected cell division genes, and genes related to plastid development and photosynthesis. When compared with data on in vitro callogenesis in <it>Arabidopsis</it>, 25% (1,260) of up-regulated and 22% (748) of down-regulated genes were in common with the genes regulated in poplar during callus induction.</p> <p>Conclusion</p> <p>The major regulatory events during plant cell organogenesis occur at early stages of dedifferentiation. The regulatory circuits reflect the combinational effects of transcriptional control and hormone signaling, and associated changes in light environment imposed during dedifferentiation.</p

    A new alternative in plant retrograde signaling

    Full text link

    Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric MIRNA precursors

    Full text link
    [EN] Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distal stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5¿-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific.We thank Goretti Nguyen, Robyn Stevens, Jacob Mreen, Fangfang Ma and Madison Schniers for invaluable technical assistance, and Zacchery R. Smith for his initial contribution to develop the pH7WG2B-OsMIR390-B/c vector. Noah Fahlgren was supported by a USDA AFRI NIFA Postdoctoral Fellowship (MOW-2012-01361). This work was supported by grants from the National Science Foundation (MCB-1231726, MCB-1330562) and National Institutes of Health (AI043288) to James C. Carrington, and from the Department of Energy (DOE DE-SC0006627) to Todd C. Mockler.Carbonell, A.; Fahlgren, N.; Mitchell, S.; Cox, KLJ.; Reilly, KC.; Mockler, TC.; Carrington, JC. (2015). Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric MIRNA precursors. The Plant Journal. 82(6):1061-1075. https://doi.org/10.1111/tpj.12835S10611075826Addo-Quaye, C., Eshoo, T. W., Bartel, D. P., & Axtell, M. J. (2008). Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome. Current Biology, 18(10), 758-762. doi:10.1016/j.cub.2008.04.042Alvarez, J. P., Pekker, I., Goldshmidt, A., Blum, E., Amsellem, Z., & Eshed, Y. (2006). Endogenous and Synthetic MicroRNAs Stimulate Simultaneous, Efficient, and Localized Regulation of Multiple Targets in Diverse Species. The Plant Cell, 18(5), 1134-1151. doi:10.1105/tpc.105.040725Arikit, S., Zhai, J., & Meyers, B. C. (2013). Biogenesis and function of rice small RNAs from non-coding RNA precursors. Current Opinion in Plant Biology, 16(2), 170-179. doi:10.1016/j.pbi.2013.01.006Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043Axtell, M. J., Jan, C., Rajagopalan, R., & Bartel, D. P. (2006). A Two-Hit Trigger for siRNA Biogenesis in Plants. Cell, 127(3), 565-577. doi:10.1016/j.cell.2006.09.032Bartel, D. P. (2004). MicroRNAs. Cell, 116(2), 281-297. doi:10.1016/s0092-8674(04)00045-5Bernard, P., & Couturier, M. (1992). Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. Journal of Molecular Biology, 226(3), 735-745. doi:10.1016/0022-2836(92)90629-xBologna, N. G., & Voinnet, O. (2014). The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis. Annual Review of Plant Biology, 65(1), 473-503. doi:10.1146/annurev-arplant-050213-035728Bouvier d’Yvoire, M., Bouchabke-Coussa, O., Voorend, W., Antelme, S., Cézard, L., Legée, F., … Sibout, R. (2012). Disrupting thecinnamyl alcohol dehydrogenase 1gene (BdCAD1) leads to altered lignification and improved saccharification inBrachypodium distachyon. The Plant Journal, 73(3), 496-508. doi:10.1111/tpj.12053Butardo, V. M., Fitzgerald, M. A., Bird, A. R., Gidley, M. J., Flanagan, B. M., Larroque, O., … Rahman, S. (2011). Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. Journal of Experimental Botany, 62(14), 4927-4941. doi:10.1093/jxb/err188Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Gilbert, K. B., Montgomery, T. A., Nguyen, T., … Carrington, J. C. (2012). Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants  . The Plant Cell, 24(9), 3613-3629. doi:10.1105/tpc.112.099945Carbonell, A., Takeda, A., Fahlgren, N., Johnson, S. C., Cuperus, J. T., & Carrington, J. C. (2014). New Generation of Artificial MicroRNA and Synthetic Trans-Acting Small Interfering RNA Vectors for Efficient Gene Silencing in Arabidopsis. Plant Physiology, 165(1), 15-29. doi:10.1104/pp.113.234989Chen, H., Jiang, S., Zheng, J., & Lin, Y. (2012). Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic. Plant Biotechnology Journal, 11(3), 336-343. doi:10.1111/pbi.12019Chen, M., Wei, X., Shao, G., Tang, S., Luo, J., & Hu, P. (2012). Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation ofOsBADH2. Plant Breeding, 131(5), 584-590. doi:10.1111/j.1439-0523.2012.01989.xCuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., … Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:10.1038/nsmb.1866Cuperus, J. T., Fahlgren, N., & Carrington, J. C. (2011). Evolution and Functional Diversification of MIRNA Genes. The Plant Cell, 23(2), 431-442. doi:10.1105/tpc.110.082784Endo, Y., Iwakawa, H., & Tomari, Y. (2013). Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO reports, 14(7), 652-658. doi:10.1038/embor.2013.73Fahlgren, N., & Carrington, J. C. (2009). miRNA Target Prediction in Plants. Plant MicroRNAs, 51-57. doi:10.1007/978-1-60327-005-2_4Felippes, F. F., & Weigel, D. (2009). Triggering the formation of tasiRNAs in Arabidopsis thaliana  : the role of microRNA miR173. EMBO reports, 10(3), 264-270. doi:10.1038/embor.2008.247Gilbert, K., Fahlgren, N., Kasschau, K., Chapman, E., Carrington, J., & Carbonell, A. (2014). Preparation of Multiplexed Small RNA Libraries from Plants. BIO-PROTOCOL, 4(21). doi:10.21769/bioprotoc.1275Guo, Y., Han, Y., Ma, J., Wang, H., Sang, X., & Li, M. (2014). Undesired Small RNAs Originate from an Artificial microRNA Precursor in Transgenic Petunia (Petunia hybrida). PLoS ONE, 9(6), e98783. doi:10.1371/journal.pone.0098783He, G., Zhu, X., Elling, A. A., Chen, L., Wang, X., Guo, L., … Deng, X.-W. (2010). Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. The Plant Cell, 22(1), 17-33. doi:10.1105/tpc.109.072041Heisel, S. E., Zhang, Y., Allen, E., Guo, L., Reynolds, T. L., Yang, X., … Roberts, J. K. (2008). Characterization of Unique Small RNA Populations from Rice Grain. PLoS ONE, 3(8), e2871. doi:10.1371/journal.pone.0002871Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G.-L., Walbot, V., … Bowman, L. H. (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research, 19(8), 1429-1440. doi:10.1101/gr.089854.108Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181Liang, G., He, H., Li, Y., & Yu, D. (2012). A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta, 235(6), 1421-1429. doi:10.1007/s00425-012-1610-5Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay  . The Plant Cell, 26(2), 741-753. doi:10.1105/tpc.113.120972Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033Ossowski, S., Schwab, R., & Weigel, D. (2008). Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant Journal, 53(4), 674-690. doi:10.1111/j.1365-313x.2007.03328.xOster, U., Tanaka, R., Tanaka, A., & Rüdiger, W. (2000). Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. The Plant Journal, 21(3), 305-310. doi:10.1046/j.1365-313x.2000.00672.xPhilippar, K., Geis, T., Ilkavets, I., Oster, U., Schwenkert, S., Meurer, J., & Soll, J. (2007). Chloroplast biogenesis: The use of mutants to study the etioplast-chloroplast transition. Proceedings of the National Academy of Sciences, 104(2), 678-683. doi:10.1073/pnas.0610062104Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., … Betel, D. (2013). Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 14(9), R95. doi:10.1186/gb-2013-14-9-r95Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly Specific Gene Silencing by Artificial MicroRNAs inArabidopsis. The Plant Cell, 18(5), 1121-1133. doi:10.1105/tpc.105.039834Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043Tanaka, A., Ito, H., Tanaka, R., Tanaka, N. K., Yoshida, K., & Okada, K. (1998). Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences, 95(21), 12719-12723. doi:10.1073/pnas.95.21.12719Thole, V., Peraldi, A., Worland, B., Nicholson, P., Doonan, J. H., & Vain, P. (2011). T-DNA mutagenesis in Brachypodium distachyon. Journal of Experimental Botany, 63(2), 567-576. doi:10.1093/jxb/err333Tiwari, M., Sharma, D., & Trivedi, P. K. (2014). Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Molecular Biology, 86(1-2), 1-18. doi:10.1007/s11103-014-0224-7Trabucco, G. M., Matos, D. A., Lee, S. J., Saathoff, A. J., Priest, H. D., Mockler, T. C., … Hazen, S. P. (2013). Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnology, 13(1). doi:10.1186/1472-6750-13-61Vogel, J., & Hill, T. (2007). High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Reports, 27(3), 471-478. doi:10.1007/s00299-007-0472-yWang, L., Si, Y., Dedow, L. K., Shao, Y., Liu, P., & Brutnell, T. P. (2011). A Low-Cost Library Construction Protocol and Data Analysis Pipeline for Illumina-Based Strand-Specific Multiplex RNA-Seq. PLoS ONE, 6(10), e26426. doi:10.1371/journal.pone.0026426Warthmann, N., Chen, H., Ossowski, S., Weigel, D., & Hervé, P. (2008). Highly Specific Gene Silencing by Artificial miRNAs in Rice. PLoS ONE, 3(3), e1829. doi:10.1371/journal.pone.0001829Zeng, L.-R., Qu, S., Bordeos, A., Yang, C., Baraoidan, M., Yan, H., … Wang, G.-L. (2004). Spotted leaf11, a Negative Regulator of Plant Cell Death and Defense, Encodes a U-Box/Armadillo Repeat Protein Endowed with E3 Ubiquitin Ligase Activityw⃞. The Plant Cell, 16(10), 2795-2808. doi:10.1105/tpc.104.025171Zhang, X., Niu, D., Carbonell, A., Wang, A., Lee, A., Tun, V., … Jin, H. (2014). ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nature Communications, 5(1). doi:10.1038/ncomms6468Zhou, X., Sunkar, R., Jin, H., Zhu, J.-K., & Zhang, W. (2008). Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Research, 19(1), 70-78. doi:10.1101/gr.084806.108Zhu, Q.-H., Spriggs, A., Matthew, L., Fan, L., Kennedy, G., Gubler, F., & Helliwell, C. (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research, 18(9), 1456-1465. doi:10.1101/gr.075572.107Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L. W., … Zhang, X. (2011). Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 145(2), 242-256. doi:10.1016/j.cell.2011.03.024Zhu, J.-Y., Sae-Seaw, J., & Wang, Z.-Y. (2013). Brassinosteroid signalling. Development, 140(8), 1615-1620. doi:10.1242/dev.06059

    Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light

    Get PDF
    Sunlight provides energy for photosynthesis and is essential for nearly all life on earth. However, too much or too little light or rapidly fluctuating light conditions cause stress to plants. Rapid changes in the amount of light are perceived as a chang

    A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Snakes provide a unique vertebrate system for studying a diversity of extreme adaptations, including those related to development, metabolism, physiology, and venom. Despite their importance as research models, genomic resources for snakes are few. Among snakes, the Burmese python is the premier model for studying extremes of metabolic fluctuation and physiological remodelling. In this species, the consumption of large infrequent meals can induce a 40-fold increase in metabolic rate and more than a doubling in size of some organs. To provide a foundation for research utilizing the python, our aim was to assemble and annotate a transcriptome reference from the heart and liver. To accomplish this aim, we used the 454-FLX sequencing platform to collect sequence data from multiple cDNA libraries.</p> <p>Results</p> <p>We collected nearly 1 million 454 sequence reads, and assembled these into 37,245 contigs with a combined length of 13,409,006 bp. To identify known genes, these contigs were compared to chicken and lizard gene sets, and to all Genbank sequences. A total of 13,286 of these contigs were annotated based on similarity to known genes or Genbank sequences. We used gene ontology (GO) assignments to characterize the types of genes in this transcriptome resource. The raw data, transcript contig assembly, and transcript annotations are made available online for use by the broader research community.</p> <p>Conclusion</p> <p>These data should facilitate future studies using pythons and snakes in general, helping to further contribute to the utilization of snakes as a model evolutionary and physiological system. This sequence collection represents a major genomic resource for the Burmese python, and the large number of transcript sequences characterized should contribute to future research in this and other snake species.</p
    corecore